alhamdulillah.. akhirnya..


pict: icare3d.org

pict: icare3d.org

selesai jg perjuangan 2 tahun disini.. eh, blom bener-bener selesai sih sebenarnya, masih ada beberapa revisi dan urusan administrasi.. 😀 tp yah paling ga, dah lebih lega.. hehe

Sedikit review soal thesis gw,..
Judul thesis: “A Study of Parallel Implementation of Tsunami Simulation on GPU“,
biasa aja sih sebenarnya.. 😀 intinya, cuma tentang bagaimana menerapkan paralelisasi pada kasus simulasi Tsunami dengan memanfaatkan paralelisme GPU.. jadi fokus utama thesis ini ada pada paralelisasi dan GPU..

kalau simulasi tsunami, itu cuma kasus doank.. karena perhitungannya cukup kompleks dan data wilayah yang digunakan cukup luas.. jadi cocok buat bahan observasi… 😀

kalau ditanya tentang apa itu paralelisasi.. Read More …

shallow water wave equations

cuma mindahin catatan thesis

———————————————–
Weiyan, in Shallow Water Hydrodynamics: Mathematical Theory and Numerical Solution for Two-Dimensional System of Shallow Water Equations, described Saint Venant System as:

$latex h_{t}+left(huright)_{x}+ left(hvright)_{y} = 0$
$latex left(uhright)_{t}+left(u^{2}h+frac{1}{2}gh^{2}right)_{x}+left(uhvright)_{y} = -ghleft(So_{x}-Sf_{x}right)$
$latex left(vhright)_{t}+left(uhvright)_{y}+left(v^{2}h+frac{1}{2}gh^{2}right)_{y} = -ghleft(So_{y}-Sf_{y}right)$

where, $latex h$ is water depth, $latex u$ is water velocity in the$latex x$ co-ordinate direction, $latex v$ is water velocity in the $latex y$ co-ordinate direction, $latex g$ is the acceleration due to gravity, $latex So$ is bed slope and $latex Sf$ is friction slope.

Then we simplified the equations. They would be

$latex dfrac{partial h}{partial t}+hdfrac{partial u}{partial x}+udfrac{partial h}{partial x}+hdfrac{partial v}{partial y}+vdfrac{partial h}{partial y}= 0$
$latex dfrac{partial u}{partial t}+ udfrac{partial u}{partial x}+vdfrac{partial u}{partial y}+gdfrac{partial h}{partial x}= -gleft(So_{x}-Sf_{x}right)$
$latex dfrac{partial v}{partial t}+ udfrac{partial v}{partial x}+vdfrac{partial v}{partial y}+gdfrac{partial h}{partial y}= -gleft(So_{y}-Sf_{y}right)$